
Industrial Control via Application Containers:
Migrating from Bare-Metal to IAAS

Florian Hofer, Student Member, IEEE
Faculty of Computer Science

Free University of Bolzano-Bozen
Bolzano, Italy

florian.hofer@stud-inf.unibz.it

Martin A. Sehr
Corporate Technology
Siemens Corporation

Berkeley, CA 94704, USA
martin.sehr@siemens.com

Antonio Iannopollo, Member, IEEE
EECS Department

University of California
Berkeley, CA 94720, USA

antonio@berkeley.edu

Ines Ugalde
Corporate Technology
Siemens Corporation

Berkeley, CA 94704, USA
ines.ugalde@siemens.com

Alberto Sangiovanni-Vincentelli, Fellow, IEEE
EECS Department

University of California
Berkeley, CA 94720, USA

alberto@berkeley.edu

Barbara Russo
Faculty of Computer Science

Free University of Bolzano-Bozen
Bolzano, Italy

barbara.russo@unibz.it

Abstract—We explore the challenges and opportunities of
shifting industrial control software from dedicated hardware to
bare-metal servers or cloud computing platforms using off the
shelf technologies. In particular, we demonstrate that executing
time-critical applications on cloud platforms is viable based on
a series of dedicated latency tests targeting relevant real-time
configurations.

Index Terms—Industrial Control Systems, Real-Time, IAAS,
Containers, Determinism

I. INTRODUCTION

Emerging technologies such as the Internet of Things and
Cloud Computing are re-shaping the structure and the control
of industrial processes in a radical way. These innovations
allow the creation of highly flexible production systems, an
essential component of the fourth industrial revolution. Key
enabling technologies such as distributed sensing, big-data
analysis and cloud storage are taking the central stage in
developing new industrial control systems. Consequently, Edge
Computing including cross-platform operation, third party
software and mixed criticality applications are increasingly
more important. The computation requirements given the
migration of functionality towards the ”edge” imply new system
architectures [1], [2].

The control of industrial processes, however, has not changed
much over the last few decades, and there are reasons for it.
For instance, typical control applications found in industrial
processes have to respond to changes in the physical world
within predefined time limits. Moving the execution of control
tasks from devices physically co-located with the controlled
process to cloud, egde or fog computing platforms requires
dealing with delays that are difficult to predict. Moreover, while
dedicated control hardware and bare-metal solutions let the

This research has been partially funded by the Italian Ministry of Research
and education under the program PRIN2015 and iCyPhy, under Siemens
sponsorship. The authors wish to thank Pasquale Antonante for his help in
the early phases of this project.

control design full authority over the environment in which
its software will run, it is not straightforward to determine
under what conditions the software can be executed on cloud
computing platforms due to resource virtualization. Yet, we
believe that the principles of Industry 4.0 present a unique
opportunity to explore complementing traditional automation
components with a novel control architecture [3].

We believe that modern virtualization techniques such as
application containerization [3]–[5] are essential for adequate
utilization of cloud computing resources in industrial con-
trol systems. The use of containerized control applications
would yield the same advantages that traditional containerized
microservices present: light and easily distributable control
applications would be able, for instance, to run on any system
and, at the same time, be easily maintained and updated [6].

Beyond the migration capabilities and flexibility, containers
simplify also the parallel execution of control software on
devices such as PLCs and, to a lesser extent, on sensing and
actuating field devices. This results in increased reliability
and robustness, while enabling further exploitation of self-*
properties, including self-awareness and self-comparison [7].
Time-machines (snapshots of the control software and/or of
the machine state), control redundancy (parallel operation of
containers and/or of virtual server instances) [7] and online
system reconfiguration (reprogramming of machine’s control
algorithms and product specifications with no or reduced
downtime) [8] are only a few of the Industry 4.0 tools that
will be made accessible. Containers allow applications such
as performance and distributed health monitoring [9], [10] to
run on a shared end node, and Digital-Twin [11] to predict
malfunction, maintenance intervals and tool lifespan. Lastly,
the application of modern virtualization techniques enables
mixed criticality contexts which allow increased efficiency,
reduction of the operational cost and decrease of production
downtime [12].

In this paper, we explore the feasibility of relocating real-

ar
X

iv
:s

ub
m

it/
28

02
92

6
 [

cs
.D

C
]

 1
3

A
ug

 2
01

9

time control applications, using off-the-shelf technology, from
dedicated infrastructure and hardware onto a shared resource
environment, both on a bare-metal host and in the cloud. The
contributions of this paper are:

• Survey of the state-of-the-art operating systems that
support application containerization, which potentially
allows the enforcement of real-time constraints.

• Latency and determinism tests to identify parameters and
configurations enabling the execution of control software
on shared virtualized hosts.

• Comparison of virtualization instances and latency perfor-
mances depending on configuration optimization.

• Evaluation of hard real-time task scheduling as application
containers and demonstration of how, under specific
conditions, the same tasks can be run in the cloud.

The rest of this paper is structured as follows. Section II ana-
lyzes related work, while Section III introduces the background
motivating our analysis. We then discuss the methodology and
design of experiments, and review containerization frameworks
in Sections IV and V. We compare candidate host operating
systems able to run the container engine in Section VI. Finally,
we document the tests performed in Section VII.

II. RELATED WORK

Containerizing control applications has been discussed in
recent literature. Moga et al. [4], for instance, presented the
concept of containerization of full control applications as a
means to decouple the hardware and software life-cycles of an
industrial automation system. Due to the performance overhead
in hardware virtualization, the authors state that OS-level
virtualization is a suitable technique to cope with automation
system timing demands. They propose two approaches to
migrate a control application into containers on top of a patched
real-time Linux-based operating system:

• A given system is decomposed into subsystems, where a
set of sub-units performs a localized computation, which
then is actuated through a global decision maker.

• Devices are defined as a set of processes, where each
process is an isolated standalone solution with a shared
communication stack. Based on this, systems are divided
into specialized modules, allowing a granular development
and update strategy.

The authors demonstrate the feasibility of real-time applications
in conjunction with containerization, even though they express
concern on the maturity of the technical solution presented.

Goldschmidt and Hauk-Stattelmann in [5] perform bench-
mark tests on modularized industrial Programmable Logic
Controller (PLC) applications. This analysis analyzes the
impact of container-based virtualization on real-time constraints.
As there is no solution for legacy code migration of PLCs, the
migration to application containers could extend a system’s
lifetime beyond the physical device’s limits. Even though tests
showed worst-case latencies of the order of 15ms on Intel-
based hosts, the authors argue that the container engines may
be stripped down and optimized for real-time execution. In

a follow-up work, Goldschmidt et al. [13], a possible multi-
purpose architecture was described and tested in a real-world
use case. The results show worst case latencies in the range
of 1ms for a Raspberry PI single-board computer, making
the solution viable for cycle times in the range of 100ms to
1s. The authors state that topics such as memory overhead,
containers’ restricted access and problems due to technology
immaturity are still to be investigated.

Tasci et al. [3] address architectural details not discussed
in [5] and [13]. These additions include the definite run-
time environment and how deterministic communication of
containers and field devices may be achieved in a novel
container-based architecture. They proposed a Linux-based
solution as host operating system, including both the single
kernel preemption-focused PREEMPT-RT patch and the co-
kernel oriented Xenomai. With this patch, the approach exhibits
better predictability, although it suffers from security concerns
introduced by exposed system files required by Xenomai. For
this reason, they suggested limiting its application for safety-
critical code execution. They analyzed and discussed inter-
process messaging in detail, focusing on the specific properties
needed in real-time applications. Finally, they implemented an
orchestration run-time managing intra-container communication
and showed that task times as low as 500µs are possible.

The three solutions discussed above share one common
aspect: emphthey were based on bare-metal configurations.
These solutions were a first step for the re-allocation of an
embedded control software onto a dedicated infrastructure. They
did consider real-time constraints, but were limited to execution
on physical hardware. The present trend of exploting the
flexibility of resource sharing through cloud computing, makes
it important investigating whether real-time control applications
may also be ran on a shared virtualized infrastructure, and
analyzing their capabilities and limitations.

In 2014, Garcia-Vallas et al. [14] analyzed challenges for
predictable and deterministic cloud computing. Even though
their focus is on soft real-time applications, certain aspects and
limits can be applied to any real-time systems. Merging cloud
computing with real-time requirements is a challenging task;
the authors state that the guest OS has only limited access to
physical hardware and thus suffers from unpredictability of
non-hierarchical scheduling, and thick stack communications.
While there exist real-time enabled hypervisors, such as the
paravirtualized RT-Xen with direct access to hardware, the
shared resources still suffer from latencies that may make real-
time execution impossible. Felter et al. in [15] focused on
identifying the performance of instances based on hardware
virtualization via Kernel-based Virtual Machines (KVMs) and
container OS-virtualization using the cross-platform capable
Docker. The benchmarks confirm that Docker results in equal
or better performance than KVMs in almost all cases. Arango
et al. [16] analyzed three containerization techniques for
use in cloud computing. The paper compares Canonical’s
Linux Containers (LXC), Docker and Singularity, an engine
developed by Lawrence Berkeley National Laboratory, to a bare-
metal application. In many aspects, the Singularity containers

performed better, sometimes even better than the bare-metal
implementation, but this is largely due to the blended approach
of the engine; Singularity is an incomplete virtualization
solution since it grants access to I/O operations without context
changes.

In summary, containerization techniques have been tested
with early positive results in a variety of contexts. However,
the discussed approaches either focus on a low latency high
performance cluster (HPC) ([14], [15]) or on hard real-
time applications running on bare-metal ([3], [5], [13]). A
combination of containers executed on cloud resources and
strictly time-dependent control application containerization has
not yet been examined. Such a configuration would require
a kernel that supports and exceeds soft real-time guarantees
obtained by low latency kernel flavors in use on HPCs with
only limited environmental control. We assess the feasibility
of this approach using off-the-shelf technology.

III. PROBLEM STATEMENT

The goal of our experiments is to explore whether off-the-
shelf technology can help to migrate hard real-time applications
from a dedicated bare-metal infrastructure to a virtualized setup.
To gain insight in opportunities and limits of this approach, a
set of operating systems as well as system modifications are
evaluated. The resulting configurations are then tested to verify
their suitability to run a real-time-capable containerization
environment. If successful, this will allow a redistribution of
applications onto a smaller amount of computing resources,
thus saving a significant amount of resources and by doing so,
reducing the cost of operating a given system in an important
way.

The real-time software running on the system will be
characterized by a set of real-time control tasks. In the literature,
three categories of real-time applications [17] have been
analyzed:
Soft Computation value decreases with deadline overshoot;
Firm Computation value obtained during an overshoot is zero;
Hard Missed deadlines may have catastrophic consequences.
If a deadline is missed, the outcome of a given set of control
tasks is impacted, but an additional effect is the delay that
may be caused to the execution of other tasks. Consequently,
when analyzing a certain overshoot, we must consider not only
a single delayed task, but also its effects on the remaining
execution schedule.

The given parameters of a periodic real-time application
also determine its run-time boundaries. The relation between
execution parameters and deadline di of a task i is given by:

fi + ri = ci ≤ di ≤ pi. (1)

where ri is the total run-time and fi the wake-up or firing
time. The former expresses the actual used computation time
including interruptions by higher priority tasks while the latter
is the time spent between the period start and the actual
execution start of a task, i.e. the latency. The sum of run-
time and firing delays defines the total time required to obtain
the computation outcome, ci. If the sum is higher than the

relative deadline, the resulting misbehavior of the controlled
system might have catastrophic consequences. Hence, the
sum should never exceed the deadline for the migration to
be sustainable. Measurement of the execution latency (fi)
inside virtual environments will allow us assessing the run-time
boundaries of a known application. If the resulting latency
is low enough, the spare computation time of an exclusive
resource could be shared with other tasks. An edge node
running mixed critically applications can now share the resource
burden and optimize resources based on priorities reducing the
overall operational cost.

The achievable amount of resource sharing depends on
system configuration and operational noise from higher priority
tasks such as interrupts, I/O delays and latency (increase
of ci). Monitoring and reducing latency and computation
time are therefore necessary but not sufficient to guarantee
determinism in a shared context. However, a successful low
latency evaluation will give a first result for the feasibility of
application migration. The impact of I/O and system latency
will be explored in future work.

IV. METHODOLOGY AND DESIGN OF EXPERIMENTS

To asses the feasibility of the migration, we have to explore
the running context and execute qualifying latency tests. We
first review state-of-the-art operating systems that can provide
both (hard) real-time and container framework support. In
addition to operating systems targeted for server infrastructures,
we also evaluate some lightweight operating systems. The
selected OS must exploit the given resources properly, allowing
the hardware to perform at its best, while not increasing the
burden of operation. Then we perform latency tests to verify the
suitability of specific container-based virtualization solutions.
We are interested in understanding how these values change as
we modify the environment. In the target configuration, a group
of tasks will run on the same shared resource. Thus, observing
the starting delays of a real-time task could clarify how the task
might behave in different operational situations. In addition, by
applying computational and I/O stress to the shared resource
running the latency test program, we can examine the effects
of increased computational effort and I/O introduced latency
on the real-time parameters of the applications; this will allow
setting an upper limit on shared resource systems under large
loads.

In general, we compare bare metal with virtualization
approaches using hypervisors of Type 1 (native). The former
is expected to perform better in latency but worse in resource
economy. Virtualized instances, yet, are better in resource
economy but this flexibility comes at the price of limited
hardware control. Note that a Type 1 hypervisor is running
directly on top of hardware, and thus it has better performance,
while a Type 2 hypervisor runs on top of an underlying
operating system. The results of the latency tests show whether
virtualization for hard real-time applications is sustainable and
to which extent, reflecting expected maximum latencies.

We perform latency tests across three different phases,
each consisting of a specific configuration and virtualization

technique. In the first phase, we investigate performance
variations on a Type 2 hypervisor. Because of the performance
degradation induced by the Type 2 hypervisor, this setting
represents the worst-case scenario. Applying our latency tests
to a real-time kernel will give insight on suitable configurations
and/or environments for execution of real-time containers
on Type 1 machines. The latency tests during this phase
consist of two isolation experiments, using tools like Linux
control groups, and system configurations, such as task and
interrupt affinity. The first experiment comprises latency tests
that gradually isolate the virtualized guest from the host system.
In the second, we observe the effects on latencies if the same
isolation is performed in the guest OS. The two experiments
will allow to analyze latency behavior and the impact of a
system configuration change. In the second phase, based on the
previous results, we test and compare latency on three other
systems:

• a bare-metal server, establishing the baseline for compari-
son of latencies and reflecting the status-quo in current
industrial control systems;

• a Type 1 hypervisor controlled virtual generic instance;
• and a Type 1 hypervisor controlled virtual compute-

optimized instance.
Finally, in the third phase, we evaluate latency within a
container running on a Type 1 hypervisor hosted on a compute-
optimized server.

V. CONTAINER FRAMEWORKS REVIEW

To isolate the different applications from each other, and due
to better performance compared to traditional virtualization
(see e.g. [15]), a containerized approach has been chosen.

The main choices available are LXC/LXD1, Docker2 and
Balena3. LXC/LXD is the default Linux-based containerization
engine. While LXC achieve containerization through a set of
kernel-level primitives, the more recent LXD offers similar
functionality with a more user-friendly approach. Docker
is an open source software written in Go, initially based
on LXC technology, that has now moved to either directly
use libcontainer, a containerization library to access
the dedicated kernel routines, or a variety of other isolation
techniques. It has a container catalog management, an open
API and an easy-to-use CLI. Balena is an open source stripped
down version of Docker hosted by RESIN.IO which allows
minimizing the resource requirements. It maintains most of
the configurations and parameters allowing a switch to Docker
and its more comprehensive features at any time. LXD focuses
on (stateful) system containers, also called infrastructure
containers, whereas Docker focuses on ephemeral, stateless,
minimal containers. The former is better suited for long-
running software based on clean distribution images. The
latter is indicated for instances that are not upgraded or re-
configured but instead replaced entirely when a new version is

1 LXC/LXD homepage: https://www.linuxcontainers.org/
2 Docker homepage: https://www.docker.com
3 Balena project homepage: https://www.balena.io

available [16]. The two models are not mutually exclusive; for
instance, LXD can be used to provide a full Linux system in a
Docker instance. For its flexibility and ease of use, we chose
Balena as the containerization engine for our test setup.

VI. OPERATING SYSTEMS REVIEW

In this section, we review different candidate operating sys-
tems, in search of a generic, non-proprietary, real-time capable
OS that is compatible with x86 and x86-64 architectures and
has seamless support for containerization. Candidates are:

• resinOS: Operating system by resin.io;
• Ubuntu Core:, Operating system for IoT devices;
• Xenomai 3:, Co-kernel extension for Linux-based OSs;
• PREEMPT RT:, Kernel patch for Linux-based systems.

Excluded in this study is the lightweight CoreOS, as it comes
pre-configured with a LXC/LXD container engine, which does
not conform with our criteria. Similarly, The RTAI4 patch has
been excluded from this analysis since it uses an approach
very similar to Xenomai, while Xenomai has better OS support
and allows user-level hard real-time tasks [18]. .

resinOS is a Yocto5 Project-based operating system designed
by “resin.io” to run containerized applications on small systems.
It has Balena pre-installed and features a cloud-based interface
to manage different hosts and containers. Its image ships
without package manager and building tools, requiring manual
patching and increasing maintenance effort. Furthermore, given
that the image has been tuned for operation on small devices,
operation on server infrastructure may not utilize maximum
hardware capabilities and thus reduce the system performance.

Ubuntu Core is a project by Canonical intended to exploit
the advantages of standard Ubuntu technology and run small
and transactionally upgradeable applications on embedded
devices. The application, developed for end devices, is shipped
as a software package called snap6 and runs sand-boxed in
a container-like environment while retaining the transparency
of a traditional application. Unfortunately, similar to resinOS,
Ubuntu Core is deliberately minimal and ships without package
manager and building tools. In addition, even though the snap
feature is native to Ubuntu and a patched kernel might add the
needed real-time properties, the binding with the host name
and file-space prevents the use of application duplicates.

Xenomai is an OS extension that can be used to support
POSIX real-time calls in a standard Linux kernel. Xenomai
integrates with Cobalt, a small real-time infrastructure that
schedules time-critical activities independently of the main
kernel logic. The interaction with an interrupt dispatcher
(I-pipe) allows increased response time and performance
and thus enables hard real-time execution. [3] suggest that
Xenomai, together with an interrupt pipeline patch, has the
best performance among the real-time OSs considered here.
Through further extension with interface skins, non POSIX-
compliant real-time software can also be configured to run on

4 The Real-Time Application Interface for Linux, https://www.rtai.org
5 Customized distros for embedded systems, https://www.yoctoproject.org/
6 Snaps are a recent standard feature of Ubuntu-based distributions,

combining the advantages of a package manager and an application container.

a Xenomai patched system [18], [19]. The base-OS can be
lightweight but still fully featured, including strong Debian-
based package support and commercial Canonical company
support. Given how interrupt handling is implemented using out-
of-band interrupt handlers and thus immediate IRQ reception,
Xenomai is an ideal candidate for hard real-time applications.
The scheduling of real-time tasks is performed in the co-
kernel and is thus easier to customize, highlighting a promising
approach. However, the patching is bound to kernel versions,
meaning progress depends on patch development of I-Pipe.

PREEMPT RT is a real-time kernel project maintained by
the Linux foundation that minimizes the amount of kernel code
that is non-preemptible. To that end, several substitutions and
new mechanisms are implemented [19]. Preempt-RT requires a
dedicated patch, recompiling and tuning of the kernel to support
hard real-time properties. The additional slicing preformed to
the kernel tasks allows faster preemption and a better control
of the CPU scheduling. Compared to Xenomai, the handling
of interrupt flow can not be controlled to the same extent, thus
limiting the achievable performance. In particular, drivers must
be tuned for real-time operation to have low process firing
jitter. Recently, there were some major improvements in the
PREEMPT-RT performance7. Its mainline development tracks
kernel distributions at a fast pace, indicating that the project
is strongly followed and has a valuable community backup,
visible through events such as the “Real-Time Summit” [21].

To proceed with our tests, and in conformance with the
requirements stated above, we define the technical criteria to be
fulfilled. Firstly, the container host OS has to be easy to deploy,
manage and configure. Ubuntu Core, for example, features
automatic updates via snap technology, making deployment
automatic and centralized. Unfortunately, Ubuntu Core does
not ship with a package manager, making general software
maintenance and configuration a snap bound process. All the
software needed on this OS must either be shipped via this
new mechanism or added and compiled manually. resinOS
presents even more limitations: the OS neither features a
package manager, nor ships with any tool to build code. The
image is rather minimalistic and focuses only on small devices.
Ubuntu Server LTS, our choice for Xenomai and PREEMPT-
RT, is a full-fledged operating system. It features snap and
package manager. Any needed tool can be easily added. Since
it has been developed for long-lasting service and support, we
believe it to be the best choice considering this aspect.

Secondly, solutions are compared for performance, resilience
and scalability. The Xenomai-patched version has the advantage
of a managed interrupt pipeline, giving the real-time kernel
control over its flow. This means that Xenomai is the better
performing of the two LTS systems. Its two-kernel architecture
enables better control over the real-time to non real-time
balance in case of system overloads, making the solution
more resilient. At the same time, the Xenomai community
recommends using no more than four active real-time cores.

7 Fayyad-Kazan et al. [20] show a performance improvement of 35% with
kernel versions v3.6.6 versus v2.6.33.

Indeed, since the Cobalt core does not share locks, handling
a higher number of cores presents significant performance
degradation [18]. If we focus on this issue, PREEMPT RT
would be the best option given that real-time scheduling is
done in a single kernel, keeping control over locks and non
real-time applications. The downside of PREEMPT RT is that
we do not have full control over interrupts and consequently
need to pay particular attention when selecting hardware and
devices.

Overall, the most promising approach appears to be the
Ubuntu Server LTS with the PREEMPT RT patch. To have
a baseline for comparison, all latency tests in the following
section will also be performed on our second choice, Ubuntu
Server LTS with Xenomai 3.

VII. EXPERIMENT SETUP AND RESULTS

The hardware configuration considered for the first tests
is a dual core, 4 thread, i7 Skylake (U) system. The device
will be used for the offline tests, is constantly powered with
CPU and power saving settings set to performance. For the
configurations for phase two we selected Aamazon web services
(AWS) to host the cloud-based environments. Recent virtual
instances use a new hypervisor based on KVM, called hvm,
which allows direct assignment and control of hardware and
resources reducing the virtualization overhead. The resulting
virtual instances offer comparable HPC performance, but with
greater flexibility and scalability [22]. We selected thus an
AWS HVM Type 1 hypervisor based T3.xlarge generic and a
C5.xlarge computation optimized instance respectively. Both
AWS instances run on 4 virtual CPUs, shared resources and
use a custom kernel set-up for Ubuntu. The last configuration,
the baseline, is performed on a bare metal server with two
Xeon X5560 processors on 8 cores, 16 threads.

The latency tests will be run on Ubuntu LTS with kernel
4.9.51 using two testing tools. We use cyclictest [23] version
1.0 to measure the latencies of cyclic firing behavior of a real-
time application, and stress [24] to simulate load in the system.
The former is part of the rt-tests suite, and a frequently
used tool for this purpose [4], [5], permitting us to compare
results, performance and test configurations. The latter runs
random computations to simulate resource load and targets a
system load average of 100%. The particularity about stress
is that, in addition to CPU load, we can use it to generate
threads for memory allocations, I/O sync requests and disk
stress on the target system. A “stressed” system is a rather
extreme overload case and defines therefore an upper limit.

Table I and Figure 1 show only part of the results, focusing on
the tests that gave most differing outputs. The script executing
all the tests, the installation scripts, and the all experiment data,
technical details and results are available online [25].

A. Offline tests

We executed a set of test to verify different configuration
options. The tests considered all combinations for isolation,
load balancing, IRQ affinity and system stress for both host and
guest system relying on VirtualBox version 5.2.18. Isolation

TABLE I
LATENCIES FOR THE TWO MAIN OSS AND THEIR CONFIGURATIONS USING

A SINGLE TEST THREAD (VALUES ARE IN µs, n > 1mln)

Test OS Min Avg σ Max

Default
Standard 2 6115 1195 767757
Xenomai 2 7368 1829 916010
Preempt-RT 2 8070 3247 1147255

W. stress
Standard 2 648 36 18206
Xenomai 3 495 124 14146
Preempt-RT 3 544 22 13215

Isolated (iso)
Standard 2 6019 998 833695
Xenomai 2 6867 1744 939560
Preempt-RT 2 8265 1650 1026677

Isolated (iso)
w. stress

Standard 3 542 26 25759
Xenomai 1 398 36 23517
Preempt-RT 2 414 13 15055

Isolated & nlb
& IRQ affinity
(irq)

Standard 2 5186 229 675079
Xenomai 2 5248 1957 907277
Preempt-RT 2 5302 227 891876

Isolated
& nlb & irq
& w. stress

Standard 2 8987 1140 5108938
Xenomai 1 10570 3181 739785
Preempt-RT 2 8202 867 68123

Isolated
–host iso

Standard 3 2630 4173 891020
Xenomai 3 1168 2832 744583
Preempt-RT 3 2448 3729 1059626

Isolated w.
stress
–host iso

Standard 3 814 26 599697
Xenomai 4 320 103 17463
Preempt-RT 2 508 14 13638

Isolated
–host iso nlb irq

Standard 2 332 229 637471
Xenomai 1 469 177 225183
Preempt-RT 3 675 146 575708

Isolated
w. stress
–host iso nlb irq

Standard 2 3808 82 912092
Xenomai 0 8242 3799 560539
Preempt-RT 2 4788 431 55459

Isolated-nlb
irq
–host iso irq

Standard 3 4902 5451 938179
Xenomai 3 4490 5024 971686
Preempt-RT 3 3145 5564 1185556

Isolated-nlb
irq with stress
–host iso irq

Standard 2 363 190 45312
Xenomai 0 189 139 18306
Preempt-RT 3 177 117 400991

is achieved through Control groups (CGroups). They are used
in Linux for resource partitioning and CPU pinning (affinity
selection), and by Balena & Co. to isolate containers from hosts.
To give the virtual machine proper computing power, we set
up CPU isolation between guest OS and host processes and, if
needed, real-time tasks from non real-time processes inside the
guest. Such configuration relates to an AWS instance, where the
guest OS threads are passed directly onto the hardware through
the hypervisor. The physical core might then be scheduled
to be shared with another virtual instance, but without the
computation burden of a complete OS. IRQ-affinity and load
balancer are kernel settings that can be changed during run-time.
The deactivation of the latter avoids that the kernel scheduler
moves not strictly resource bound tasks to new resources. The
former permits us to change the CPU assignment of some
interrupts, and avoids thus that such interrupts when triggered
force the a real-time task to wait. Although we followed the

“Linux Realtime” [26] guidelines for most of the following
system tests, in this comparison we do not evaluate full dynamic
ticks. In fact, for this configuration to work, a CPU must not
run more than one thread. However, to save resources we want
to maintain more than one real-time application per CPU and
thus discarded this option.

During this first series of latency tests, we observed that
virtual instances may be pinned to a certain CPU-set, Table I.
The results of the isolation test confirm that tasks running in
parallel on the VM Host influence the latency performance tests.
If we compare the results of host only isolation with host and
guest isolation for “Isolated” and “Isolated w. stress” in Table I,
we note that the performance without stress decreases to one
third while the stressed version has only a slight performance
loss. Furthermore, in most cases Xenomai and Preempt-RT
perform better when under stress, with the best performance
levels observed when isolated with a load balancer.

It seems that OS virtualization increases idle noise, but
techniques such as the energy saving “dynamic ticks” are
not operative. With a loop frequency of 1000Hz we maintain
a constant high scheduler invocation rate, higher than the
schedulers interrupt tick, not explainig the noise. It can however
be due to the activity of the load balancer. In addition, the
noise appears to be increasing when IRQ-affinity is set on
a non guest isolated system. A reason may be that each of
the CPUs is not a physical core but only one of two threads
of the hyper-threading instance of it. Moreover, with load
balancing on guest without stress the low load allows the
host scheduler to fill up the available CPU time with other
threads and eventually to distribute them between CPUs. This
movement of tasks causes the CPU registers and L1-L2 caches
to be flushed and refilled from the L3 cache. In addition, it
is impossible to pin the single threads representing a virtual
CPU to a physical CPU, even when shielded, so that the guest
threads might be moved to other CPUs while interrupts “steal”
an assigned CPU. The latter characteristic seems to be isolated
to the implementation of the standard VirtualBox hypervisor.
All these factors introduce latencies that are visible in the
average and peak values. This may indicate room for further
latency improvements by removing interrupts and overload
also on the CPU siblings, influencing directly the maximum
performance and average latency of the real-time tasks. The
guest under stress, yet, does not allow much free CPU-time
on the physical CPUs instead. Thus, the host threads and all
movable tasks are mostly run on the CPU not serving any
of the virtual machine threads. This ultimately prevents the
scheduler from shifting threads to other CPUs, and thus avoids
added latency.

The most interesting result is gathered when the guest is
isolated and host is configured with isolation, no load balancer
and IRQ affinity, Table I test 9 and 10. In comparison with
previous results, in this test the latency statistics invert, having
better performance and less noise in the “idle” case. As
discussed before, the stressed test is more an extreme upper
limit than an actual use case. Thus, the decreasing latency
performance depicts the expected behaviour allowing us to

●
●

●

●

●

●

● ●

●

●

●

100

10000

B
M

.P
rt

B
M

.S
td

B
M

.X
en

C
5.

A
w

s

C
5.

P
rt

C
5.

X
en

T
3.

A
w

s

T
3.

P
rt

T
3.

P
rt

.U

T
3.

X
en

T
3.

X
en

.U

Machine type

S
ta

rt
 ti

m
e

 (
va

lu
es

 a
re

 in
 µ

s)

>10 ms in
% of set

0.5

1.0

1.5

2.0

2.5

Fig. 1. Boxplot of latencies, with averages and overshoot sizes - mean in blue

predict latency, and consequently determinism, with increasing
system load, better. In this setting, the PREEMPT-RT version
performs best among the three kernel versions having the lowest
maximum peaks under stress. In addition, this configuration is
actually closer to an isolated bare metal or a hypervisor Type
1 solution. The presented configuration tries to prevent the
host from interacting with the guests resources. If we add the
no-load balancer and IRQ affinity configuration for the guest
system the results invert again. Therefore, the results indicate
that we should expect the best behavior with CPU isolation on
bare metal solutions as well as hypervisor Type 1 products.

B. Hardware comparison

In light of all tests performed here, we identified the
following configuration as favorable for our purposes: Isolation,
with load balancer. Based on this configuration, we continue
with a set of experiments on different hardware under stress.
The resulting latency values are summarized in Figure 1.

A total of ten million loops over multiple hours have been
executed for each configuration. Different from our previous
experiments, the number of cyclictest and stress
threads is given by the size of the isolation configuration,
i.e. for each vCPU running real-time we have one thread of
each kind. Ideally, the maximum firing delay of the threads
should stay below 1

10

th of the cycle time. This upper limit has
deliberately been set to allow minimal resource sharing for our
sample application. Therefore, we added two reference lines
in the plot visualizing those thresholds, one at 10ms (100ms
cycle) and 100µs (1ms cycle).

All obtained results have been gathered under stress and
should be considered as worst case scenarios. Among all

standard kernel configurations, the reference bare metal solution
performs best in mean and spread. The same is true for
Xenomai based versions. Note that the Xenomai configuration
of the various systems always performs worst. The two main
reasons are: 1) one configuration exposed more than the
recommended 4 cores, causing a high amount of context
switching overhead, and 2) hypervisor IRQ latency that removes
the advantage of the dedicated interrupt pipeline of Xenomai
compared to PREEMPT-RT and AWS/Standard kernels.

On the other hand, if we consider the PREEMPT RT
configurations in Figure 1, the bare metal set-up still performs
best in mean, but, this time, it has a higher spread than the
C5 and T3 instances. However, the average latency times are
all in the range of 5 to 12µs and, in addition, each spread
has the majority of values below our lower target of 100µs.
Therefore, our first suggestion for a IAAS replacement can be a
general T3 instance. With only 96 occurrences out of 10 million
(0.00096%) exceeding the upper limit, it can be an economic
solution where strict determinism is not needed or cycle times
are higher than the peak value measured, 49ms. However, in
such cases the peaks should be managed properly via tools
such as scheduling monitors and/or orchestrators. If stricter
limits are required, the C5 PREEMPT RT instance showed the
lowest spread and peak (114µs) among the measured instances.
Interestingly, a test run with a PREEMPT RT T3-Unlimited
enabled instance produced even better results. The latter is
a feature that allows CPU bursts for short high load peaks
on T3 instances at additional price. This economic variant
can therefore also be used for applications requiring stricter
determinism. In conclusion, the results are promising and
confirm the feasibility of migration to IAAS solutions.

C. Test-run of a Balena container

To use real-time control group capabilities inside Balena and
Docker containers, an additional kernel configuration flag must
be enabled. Unfortunately, the flag cannot be enabled for the
PREEMPT RT version of the systems. Due to some temporary
compatibility constraints, the simultaneous operation of both
full kernel preemption and RT-CGroup has been disabled.
Details can be found at [21].

Finally, we successfully ran a test container with the real-
time test program. Latency tests executed as above confirms
our expectations for the container: with average values of
7(σ0)/11.44(σ0.71)µs for stress/no stress respectively, and
maximum peaks of 7655/11644µs in a default configuration
for a C5 system, a migration to an IAAS virtualized instance
is possible.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored limits and feasibility of migrating
real-time applications from bare metal servers to virtualized
IAAS configurations. We identified two promising operating
systems, Xenomai and PREEMPT-RT patched Linux, and tested
task latencies in a variety of configurations, with the system
both in idle and stress scenarios. Although the tests aim only
at computation latency, appropriate response times are a strict

requirement even before considering I/O and system latency.
We observed that the performance of the latency tests on a
Type 1 hypervisor is comparable to the performance on a bare
metal solution. Finally, we configured a real-time container
engine and built and ran a containerized real-time application.
Our experiments showed that the containers could be grouped
and orchestrated using the CGroups feature of the Linux kernel
to optimize resource utilization.

We showed that containerization introduces a novel paradigm
for control applications. Previously isolated computation tasks,
however, are now operating concurrently and interacting with
each other, potentially influencing timing performance. We
concur with Goldschmidt et al. [13] that this new paradigm
requires investigation on topics such as container security,
restricted container access and intra-container data exchange.
In the future, we are planning to consider orchestration tools
that can schedule real-time containers based on pre-configured
capacities. The goal here is to maximize resource utilization
without significantly impacting overall execution determinism,
at first on computation only and finally considering I/O
and system latency. Moreover, we believe that latency and
performance tests of recent releases of a patched Linux kernel
should be further investigated. Indeed, the latest releases
introduce a new Earliest Deadline First scheduler for hard real-
time applications. However, the Linux kernel used by AWS,
although optimized for their hardware, is not up to date and
inline with the latest kernel releases. Hence, this optimization
might prevent the full utilization of new capabilities and
create a configuration mismatch, affecting maximum achievable
performance.We believe that the proper configuration and
tuning of the Linux kernel parameters may improve overall
task determinism and is worthy of further investigation.

REFERENCES

[1] K. Telschig, A. Schönberger, and A. Knapp, “A real-time container
architecture for dependable distributed embedded applications,” in
2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE). IEEE, aug 2018.

[2] F. Hofer, “Architecture, technologies and challenges for cyber-physical
systems in industry 4.0 - a systematic mapping study,” in 12th ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2018.

[3] T. Tasci, J. Melcher, and A. Verl, “A container-based architecture for
real-time control applications,” in 2018 IEEE International Conference
on Engineering, Technology and Innovation (ICE/ITMC). IEEE, jun
2018.

[4] A. Moga, T. Sivanthi, and C. Franke, “OS-level virtualization for
industrial automation systems: Are we there yet?” in Proceedings of the
31st Annual ACM Symposium on Applied Computing - SAC '16. ACM
Press, 2016.

[5] T. Goldschmidt and S. Hauck-Stattelmann, “Software containers for
industrial control,” in 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, aug 2016.

[6] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open
issues in scheduling microservices in the cloud,” IEEE Cloud Computing,
vol. 3, no. 5, pp. 81–88, sep 2016.

[7] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture
for Industry 4.0-based manufacturing systems,” Manufacturing Letters,
vol. 3, pp. 18 – 23, 2015.

[8] K. Telschig and A. Knapp, “Towards safe dynamic updates of distributed
embedded applications in factory automation,” in 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
no. reconfiguration. IEEE, sep 2017.

[9] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and J. A.
Guzzo, “A fog computing-based framework for process monitoring and
prognosis in cyber-manufacturing,” Journal of Manufacturing Systems,
vol. 43, pp. 25–34, apr 2017.

[10] L. S. Terrissa, S. Meraghni, Z. Bouzidi, and N. Zerhouni, “A new
approach of PHM as a service in cloud computing,” in 2016 4th IEEE
International Colloquium on Information Science and Technology (CiSt),
NA, Ed., IEEE. IEEE, oct 2016, pp. 610–614.

[11] G. Schroeder, C. Steinmetz, C. E. Pereira, I. Muller, N. Garcia,
D. Espindola, and R. Rodrigues, “Visualising the digital twin using
web services and augmented reality,” in 2016 IEEE 14th International
Conference on Industrial Informatics (INDIN), NA, Ed. IEEE, jul 2016.

[12] R. Roy, R. Stark, K. Tracht, S. Takata, and M. Mori, “Continuous
maintenance and the future – foundations and technological challenges,”
CIRP Annals, vol. 65, no. 2, pp. 667–688, 2016.

[13] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner,
“Container-based architecture for flexible industrial control applications,”
Journal of Systems Architecture, vol. 84, pp. 28–36, 2018.

[14] M. Garcı́a-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time
virtualization and predictable cloud computing,” Journal of Systems
Architecture, vol. 60, no. 9, pp. 726–740, oct 2014.

[15] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
2015 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, mar 2015.

[16] C. Arango, R. Dernat, and J. Sanabria, “Performance evaluation of
container-based virtualization for high performance computing environ-
ments,” 2017.

[17] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling
algorithms and applications. Springer Science & Business Media, 2011,
vol. 24.

[18] Xenomai 3 - Project Wiki. [Online]. Available: https://gitlab.denx.de/
Xenomai/xenomai/wikis/Start Here

[19] C. Scordino and G. Lipari, “Linux and real-time: Current approaches
and future opportunities.” IEEE, 2008.

[20] H. Fayyad-Kazan, L. Perneel, and M. Timmerman, “Linux PREEMPT-
RT v2.6.33 versus v3.6.6,” ACM SIGBED Review, vol. 11, no. 1, pp.
26–31, feb 2014.

[21] The Linux Foundation - Real-Time Linux. [Online]. Available:
https://wiki.linuxfoundation.org/realtime/

[22] Amazon AWS User guide - The C5 instance. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/c5/

[23] rt-tests - test programs for real-time kernels. [Online]. Available:
https://directory.fsf.org/wiki/Rt-tests

[24] Stress - the stress testing tool. [Online]. Available: http://people.seas.
harvard.edu/∼apw/stress/

[25] Test archive. [Online]. Available: http://bit.ly/2XdoYPn
[26] LinuxRealtime.org - Improving the Real-Time Properties. [Online].

Available: http://linuxrealtime.org/index.php/Improving the Real-Time
Properties

https://gitlab.denx.de/Xenomai/xenomai/wikis/Start_Here
https://gitlab.denx.de/Xenomai/xenomai/wikis/Start_Here
https://wiki.linuxfoundation.org/realtime/
https://aws.amazon.com/ec2/instance-types/c5/
https://directory.fsf.org/wiki/Rt-tests
http://people.seas.harvard.edu/~apw/stress/
http://people.seas.harvard.edu/~apw/stress/
http://bit.ly/2XdoYPn
http://linuxrealtime.org/index.php/Improving_the_Real-Time_Properties
http://linuxrealtime.org/index.php/Improving_the_Real-Time_Properties

	I Introduction
	II Related work
	III Problem Statement
	IV Methodology and Design of Experiments
	V Container Frameworks Review
	VI Operating Systems Review
	VII Experiment setup and Results
	VII-A Offline tests
	VII-B Hardware comparison
	VII-C Test-run of a Balena container

	VIII Conclusions and Future Work
	References

