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Industry 4.0 is changing data collection, storage, and analysis in indus-
trial processes fundamentally, enabling novel applications such as flex-
ible manufacturing of highly customized products. However, real-time
control of these processes has not yet realized its full potential in us-
ing the collected data to drive further development. Indeed, typical in-
dustrial control systems are tailored to the plant they need to control,
reusing, and adapting to challenge. In the past, the need to solve plant-
specific problems overshadowed the benefits of physically isolating a con-
trol system from its plant. We believe that modern virtualization tech-
niques, specifically application containers, present a unique opportunity
to decouple control from plants. This separation permits us to fully re-
alize the potential for highly distributed and transferable industrial pro-
cesses even with real-time constraints arising from time-critical subpro-
cesses. This paper explores the challenges and opportunities of shift-
ing industrial control software from dedicated hardware to bare-metal
servers or (edge) cloud computing platforms using off-the-shelf technol-
ogy, i.e., technologies commercially available. We present a migration
architecture and show, using a specifically developed orchestration tool,
that containerized applications can run on shared resources without com-
promising scheduled execution within given time constraints. Through
latency and computational performance experiments, we explore three
system setups’ limits and summarize lessons learned.
K E YWORD S
Industrial Control Systems, Real-Time, IAAS, Container orchestration,
Determinism

1 | INTRODUCTION
Emerging technologies such as the Internet of Things and Cloud Computing offer the chance to innovate structure
and control of industrial processes. These new technologies allow the creation of flexible production systems, for
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which control is performed through distributed sensing, big-data analysis, and cloud storage. Such systems may also
take advantage of new computing paradigms like the Edge Networking paradigm or the Fog Computing, which brings
data storage and computation as close as possible to the point of need (e.g., a gateway) [1, 2]. In this cloud-to-things
continuum [3], new technologies and a new paradigm of computation and data transmission and storage offer an
opportunity for innovation of the industrial system and processes like never before. This opportunity is the essence
of the fourth industrial revolution, i.e., Industry 4.0 (I4.0) [2]. However, the control of industrial processes has not yet
fully embraced such a revolution, and there are reasons for it. Firstly, control systems in industrial processes require
timeliness and robustness imposed from the production chain, makingmaintaining formal guarantees or implementing
changes difficult. For instance, control software for industrial processes must respondwithin specific time limits set by
the physical systems they control. New technologies and paradigms need to complywith such requirements. Secondly,
moving control tasks to Edge or Fog networks may require dealing with heterogeneous delay sensitivities of the task
and network delays when connectivity is not appropriate to meet real-time deadlines [3]. Thus, such systems may
need specific care in task scheduling.

On the other hand, modern virtualization techniques can efficiently use cloud computing resources in industrial
control systems and reduce operational cost and production downtime [4]. These include virtualization techniques
that create virtual instances of a computer system, containerization techniques that create virtual instances of individ-
ual processes and serverless applications that run as Functions as a Service [5, 6, 7]. Using such technologies allow
time-machines (i.e., engines that perform snapshots of control software and machine state), control redundancy
(i.e., parallel operation of containers and virtual server instances [8]), and online system reconfiguration (i.e., repro-
gramming of control algorithms and product specifications with little or no downtime [9]). In particular, containers
simplify the parallel execution of control software on devices such as PLCs and, to a lesser extent, on sensing and
actuating field devices. They allow applications such as performance and distributed health monitoring to run on a
shared end node [10, 11] and can host digital twins (i.e., digital replicas of physical components) to predict malfunc-
tion, maintenance intervals, and tool lifespan [12]. Virtualization, containers, and serverless applications yield to the
creation of light and easily distributed control applications able to run on any system, and that are, at the same time,
easy to maintain and update [13]. These technologies can increase the reliability and robustness of control systems
while enabling self-* properties, through which systems can automatically maintain themselves throughout different
scenarios (i.e., Self-aware, Self-predict, Self-compare, Self-configure, Self-maintain, Self-organize) [8].

All these advantages do not come at zero cost. Deploying an efficient infrastructure for control systems that
considers real-time constraints and exploits the new technologies and principles of Industry 4.0 is not an easy task
for control engineers and developers. Being able to select and master all these technologies in the implementation,
deployment, and maintenance of such novel control infrastructures may appear too demanding for control engineers
and developers of small and medium-size companies [14]. Thus, migrating to such a light and distributed architecture
may not be a viable solution for many companies.

This work aims to propose a novel control systems architecture that exploits virtualization and containerization of
bare-metal host or cloud environments to build light and easily distributed control applications that can easily follow the
principles of Industry 4.0 and use off-the-shelf technologies. To illustrate the viability of such novel architecture, we have
performed two series of experiments with different architecture instances that make use of off-the-shelf technologies:
a set of latency tests (Section 6.2.1) and a set of performance tests (Section 6.3). The former compares bare-metal and
hardware virtualization solutions and chooses the most suitable for implementing control systems’ virtualization—the
latter tests for resource optimization using container orchestration. Thus, the contributions of this paper are the
following:
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• An architecture for virtualization of control systems;
• A scheduling schema to statically allocate and monitor containers and their resources;
• A set of tests to trade-off resource efficiency with real-time task scheduling for containerization and validate the

architecture.

The rest of this paper is structured as follows. Sections 2 and 3 analyze related work and background to motivate
our analysis. Section 4 describes the research questions and introduces a preview of our approach. In Section 6, we
illustrate the design of the sets of experiments and present their results. Section 5 proposes an architectural solution
based on reference models for Industry 4.0, implemented through the orchestration of containers and validated by
the results of the tests. Finally, we discuss lessons learned and conclude in the last two Sections.

2 | CONTROL PROGRAM EXECUTION
Our work pertains to two major research areas that focus on different aspects of control program execution: cloud
and high-performance computing and control containerization. The former focuses on lowering its latency and gives
less importance to its execution determinism. The latter tries to reshape its run-time environment and, thus, to create
a level of independence to its underlying hardware. During this redesign, determinism stays in focus, leaving system
virtualization in the background. The resulting combination of containers executed on cloud resources and strictly time-
dependent control application containerization constitutes a new challenge that can be coped with applying insights
from both fields. Such a combination requires an operating system kernel that supports and exceeds soft real-time
guarantees secured by low latency kernel flavors in use on HPC installations while keeping only limited environmental
control. In this paper, we assess the feasibility of this approach using off-the-shelf technology.

In 2014, Garcia-Vallas et al. [15] analyzed challenges for predictable and deterministic cloud computing. Even
though they focus on soft real-time applications, specific aspects and limits apply to any real-time system. Merging
cloud computing with real-time requirements is challenging: the guest OS has only limited access to physical hardware
and thus suffers from the unpredictability of non-hierarchical scheduling and thick stack communications. While real-
time enabled hypervisors such as the para-virtualized RT-Xenmanage virtual instances with direct access to hardware,
the shared resources still suffer from latency that may make real-time execution impossible. Hallmans et al. [16] draw
similar observations, but they reach different conclusions. They conclude that it is possible to move a complete soft
real-time system into the cloud; the authors see an upcoming development that further allows for real-time systems.
Many latency performance evaluations confirm this possibility. Nonetheless, to our knowledge, no one has verified
the proper execution of real-time tasks within deadlines.

Containerizing of control applications is a recent concern. Moga et al. [5] presented the concept of containeriza-
tion of full control applications to decouple the hardware and software life-cycles of an industrial automation system.
The authors propose OS-level virtualization as a suitable technique to cope with automation system timing demands.
They propose two approaches to migrate a control application into containers on top of a patched real-time Linux-
based operating system: a) a given system is decomposed into subsystems, where a set of sub-units performs a
localized computation, which then is actuated through a global decision-maker, or b) Devices are defined as a set of
processes, where each process is an isolated standalone solution with a shared communication stack, and based on
this, systems are divided into specialized modules, allowing a granular development and update strategy. The authors
demonstrate the feasibility of real-time applications with containerization, even though they express concern about
the technical solution’s maturity. Goldschmidt and Hauk-Stattelmann in [7] perform benchmark tests on modularized
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industrial Programmable Logic Controller (PLC) applications. This analysis examines the impact of container-based
virtualization on real-time constraints. As there is no solution for PLCs’ legacy code migration, the migration to ap-
plication containers could extend a system’s lifetime beyond the physical device’s limits. Even though tests showed
a worst-case latency in the order of 15ms on Intel-based hosts, the authors argue that the container engines may
be stripped down and optimized for real-time execution. In follow-up work, Goldschmidt et al. [17], a possible multi-
purpose architecture, was described and tested in a real-world use case. The results show the worst-case latency of
about 1ms for a Raspberry PI single-board computer, making the solution viable for cycle times of about 100ms to 1s .
The authors state that memory overhead, containers’ restricted access, and problems due to technology immaturity
are still to be investigated. Tasci et al. [6] address architectural details not discussed in [7] and [17]. These additions
include the definite run-time environment and how to achieve deterministic communication of containers and field
devices in a novel container-based architecture. They proposed a Linux-based solution as a host operating system, in-
cluding both single kernel preemption-focused PREEMPT-RT patch and co-kernel oriented Xenomai. With this patch,
the approach exhibits better predictability, although it suffers from security concerns introduced by sensitive system
files required by Xenomai. For this reason, they suggested limiting its application for safety-critical code execution.
They analyzed and discussed inter-process messaging in detail, focusing. Finally, they implemented an orchestration
run-time, managing intra-container communication, and showed that task times as low as 500µs are possible.

The three solutions discussed above are all based on a bare-metal solution. Although these solutions represent
the first essential step for reallocating an embedded control software onto a dedicated infrastructure (i.e., virtualizing
the control units), showing that containerization of real-time applications is viable, they remain limited to physical
hardware execution.

3 | BENCHMARKS IN HARDWARE VIRTUALIZATION AND OS CONTAINER-IZATION
Felter et al. in [18] study the performance of instances based on hardware virtualization via Kernel-based Virtual
Machines (KVMs) and container OS-virtualization using the cross-platform capable Docker. The authors state that
Docker results in equal or better performance than KVMs in almost all cases. Arango et al. [19] analyze three con-
tainerization techniques for use in cloud computing. The paper compares Canonical’s Linux Containers (LXC), Docker,
and Singularity, an engine developed by Lawrence Berkeley National Laboratory, to a bare-metal application. In many
aspects, the Singularity containers performed better, sometimes even better than the bare-metal implementation.
However, this is due primarily to the engine’s blended approach; namely, Singularity is a partial virtualization solution
since it grants access to I/O operations without context changes. We will discuss the containerization techniques and
selection of candidates in Section 6.2. A recent work by Telschig et al. [1] explores a platform-independent container
architecture for real-time systems. The authors identify mixed-criticality, cross-platform operation, and third-party
software as the main reason for developing new architectures. Their proposal manages communication between this
dependent distributed software through an architecture. This architecture focuses on the isolation of critical from
non-critical tasks and portability. The presentation concludes with the introduction of a prototype agent. Abeni et
al. [20] attempt to extend the Linux standard scheduler to respond better. Their work details the Complete Fair Sched-
uler hierarchical extension with a deadline-based algorithm optimizing latency results for containerized software. The
modified scheduler successfully manages a more considerable amount of time-critical tasks, performing better than
the default deadline-based scheduler.

Overall, containerization has shown powerful enough to be a resource economic replacement for traditional vir-
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tualization techniques. However, a performance investigation with real-time applications remains due; scheduling
techniques like those presented in [20] further prove that there is still room for improvement.

4 | RESEARCH QUESTIONS AND APPROACH PREVIEW
While flexibility and efficiency are big advantages, smart systems display increased running costs. New architectures
suggested for Industry 4.0 mostly provide distributed and decentralized control. On the other hand, control layers
have to carry outmore complex tasks resulting in a high amount of small distributed supervision loops on the hardware.
In turn, this would increase maintenance and operation costs.

Virtualization of control units, i.e., abstracting function from hardware1, allows up-scaling the installed compu-
tation appliances. Such a unit can run on shared hardware exploiting cost reduction advantages. Besides, the virtual-
ization of control units can be further extended by virtualizing the computing machines and distributing the function
over containers. This up-scaling has to use standard hardware and software to keep a low maintenance profile. The
market offers an increasing number of readily off-the-shelf software solutions. Unfortunately, identifying the solution
that fits the specific real-time constraint is often a challenging problem for practitioners. Therefore, one of the goals
of this work is to study whether, and to which extent, off-the-shelf technology can be used for hard real-time appli-
cations migrated to a virtualized computing resource. Specifically, we propose an architecture based on off-the-shelf
technologies for the containerization and virtualization of control systems, Fig. 3 in Section 5. Its design can be used as
a template to ease transitions to a containerized setup and shared instances, enabling advanced features for novel
industrial control systems.

Control software is usually characterized by one ormore real-time taskswith periodic executions and computation
deadlines. In literature, three types of periodic real-time applications have been studied: Soft, where computation
value decreases with a deadline overshoot; Firm, when exceeding the maximum delivery time nulls the computation
value; or Hard, where a missed deadline may have catastrophic consequences [21]. Missing deadlines is a collective
matter as a task that exceeds its timing limits may further impede other tasks’ execution. The delayed scheduler yield
consumes additional resources that may cause a bottleneck, and follow-up tasks may not maintain their deadlines.
Eq. 1 shows the estimation of a single run of the total required computation time ci of a periodic real-time task i .

ci = fi + ri = fi + t i +
N∑
j=1

ni j +
M∑
k=1

mi k (1)

fi is the wake-up or firing time (latency), and ri is the total run-time. The former captures the time spent between the
period start and the execution start of a task. Its measurement includes task switching times and delays due to higher
priority tasks and interrupts served. The latter expresses the actual used computation time t i and task interaction
(ni k ) and environment-induced noise (mi j ). Tasks interaction noise includes interruptions by higher priority tasks,
task inter-process communication (IPC), and I/O waits and latency due to missed pages. Environment noise includes
hypervisor delays and hardware or (kernel) software interrupts and network delays. As the characteristics of the
tasks and execution environment that may determine a noise (n or m in Eq. 1) are not always known in advance,
the estimation of such noise in some cases may be difficult if not impossible. This restriction particularly impacts
deterministic (hard) real-time systems that must know in advance that every task i will complete within its deadline
di , [22, 23]. In this work, we aim to assess alternative architectural configurations for a control system migrated to a

1Worth noticing that virtualization of control systems does not imply the use of virtual machines or containers.
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F IGURE 1 Application example: A cooling and auxiliary regulation system configuration for a gas turbine
migrated with the real-time enabled cloud. RT-Node1 monitors and handles the on-premises installation.

virtualized and containerized environment while maintaining the original level of the system’s determinism2 running
in a bare-metal environment.

As an illustrative example, Fig. 1 depicts a distributed facility that controls the auxiliary and cooling systems of
a group of thermo-electric gas-turbines. The control system has been migrated to a software system with shared
resources and application containerization. The control components have been separated from the on-site remote
terminal unit and run in a shared, two- instances virtualized private cloud environment, [16]. The real-time capable
virtualization instance (RT-node1 on the right in the private cloud) acts as an intermediary betweenMonitoring and

Management and the on-premises end-terminals. Control software is divided into multiple independent binaries,
isolated and adapted to run on a standard Linux system [5]. In these settings, the application refresh rate, or periodicity
p , must not exceed the expected maximum round-trip time between the remote terminal unit and the cloud of 100ms .
For instance, if the system software exhibits the worst-case computing time of 10ms and each instance uses assigned
CPU and memory exclusively, the remaining CPU time of 90ms is spent in idle, which is a high resource waste. Thus,
sharing the spare CPU-time can improve resource utilization, and placing multiple containers on the same resources can
reduce the required system size and running costs. In principle, such an approach enables flexible resource management
and may reduce infrastructural cost [16]. Thus, to evaluate the level of task-optimization required for the proposed
architecture to meet the control unit’s deadlines (Eq. 1), we performed a series of experiments. Specifically, we will
answer the following research questions:

2For "maintaining" we mean that we experimentally observe the same determinism
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RQ1: What are the viable off-the-shelf system configurations that make resource sharing through containers viable?

We have seen in Eq. 1 that the achievable amount of resource sharing depends on the system and concurrent
running tasks. This research question intends to investigate the responsiveness of possible candidate off-the-
shelf alternative solutions. Systems that prove a low and stable firing time, fi , fulfill a vital prerequisite to achieve
determinism in a shared context.

RQ2: What is the achievable level of CPU sharing with a standard real-time enabled kernel?
While a constant fi describes the strength of reaction, the actual CPU load shows the variability of task run-times,
ri . Thus, monitoring software run-time on shared CPUs displays the impact of task interaction and operating
system, I/O and virtualization delays on the programmed run-time t i .

To answer the questions, we performed two sets of experiments as illustrated in Fig. 2. Firstly, we study latency

Experiment start Evaluation of
Candidate OS

Evaluation of
Containerization

techniques

Virtualization
settings test

Test execution

Analysis
of results

Kernel set-
tings test

Test execution

Analysis
of results Experiment end

Context Latency Performance

Same Hardware and
VM systems in all tests; RQ2

Different
off-the-shelf solutions; RQ1

F IGURE 2 Overview of the approach for the evaluation of alternative architectural configurations and
performance optimization of the chosen solution

behavior with a shared resource on multiple hardware and system setups. Operating systems and container engines
and their configurations are selected with latency stress tests. Such tests show how task reaction times change with
varying configurations and system load, RQ1. Secondly, we run a set of experiments on the best solution found in
RQ1 to analyze performance and determinism with different loads. We further explore computation time stability,
delays, and occurring deadline misses if more than one task runs on the same resource through resource allocation.
Isolated CPU performance tests allow us to remove confounding factors and have a recommendation on the upper
sharing boundary, RQ2. With such sets of experiments, we aim at identifying the parameters of Eq. 1. The latency
tests focus on grasping a task’s firing time, fi , using a low footprint capturing software and logs. First, we test in idle,
second using stress on CPU, I/O, and random memory access. The performance tests try to identify the noise the OS,
the hypervisor, and concurrently running system tasks cause, ni j in Eq. 1. Section 6 details the approach and answers
the research questions.

5 | REAL-TIME SMART SYSTEM ARCHITECTURE
Our architecture aims at contributing to the current debate within the systems engineering research community on
strategies for designing flexible systems’ architecture ([24]) where flexibility is defined as how easily a system’s capa-
bilities can be modified in response to external change, [25]. In this respect, our work proposes a flexible architecture
for control systems that exploit virtualization and containerization capabilities over the cloud, designs it as a leveled
model for the real-time system in the cloud ([16, 26]), and finally, is deployed exploiting off-the-shelf technologies.
The way we decoupled control from the machine and move it to the cloud makes the overall system highly modular
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F IGURE 3 The proposed architecture for Container-based Virtualized Industrial Control Systems. The
Monitoring and Management Cloud monitors the system and deploys containers in the Control Cluster. The physical
servers dedicated for control tasks operate multiple virtual machines, each hosting several real-time application
containers. The Orchestrator is responsible to organize and monitor the run-time load.

as it combines the decoupling mechanism of the leveled model for real-time systems of Hallman et al. ([16]) and the
containerization decomposition in a virtualized cloud system. Furthermore, our approach’s deployment is grounded
on the concept of flexibility as the incorporation of options or design alternatives into a system ([25]). Specifically,
our proposed architecture is deployed and tested under different off-the-shelf technologies. We used latency and
performance as Tradespace variables ([27]) to test the deployed architectural alternatives.

5.1 | Overview and Layering
Our architecture extends the concept of the leveled model of Hallmans et al. [16] to off-the-shelf technology and
managed real-time systems fitting the requirements of virtualized control software. We divide the architecture into
three layers (Fig. 3):

• The Monitoring and Management Cloud or cloud in Hallmans et al., i.e., services hosted on a cloud or private
virtualized dedicated infrastructure;

• The Control Cluster or Real-time Cloud, for process control and control-related services;
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F IGURE 4 Comparison and mapping of layers to the architecture proposal of the two used references, Han et
al. [29] and Lee et al. [8].

• TheOn-premises Installation or process, connecting a multitude of heterogeneous devices that interact with the
physical world.

The three layers may overlap such that, for example, the control cluster can be part of the cloud or on-premises
installation as an internal IAAS infrastructure.

We then use the layer classification and analysis technique of recent work [28] to integrate the model with two
other styles. The first integration is the 5C model of Lee et al. [8] on the right of Fig. 3. This model represents a
hierarchical distribution of functions, divided into five layers, each representing Industry 4.0 smart property, [8]. The
second style is based on the three control levels (Local Control, Supervisory Control, and Higher Supervisory Control)
that act as an incentive for control loop division and ease vulnerability investigations [29]. This model is represented
on the left of Fig. 3. This separation reflects the division by criticality and timing requirements recommended by
Hallmans et al. ([16]). Fig. 4 illustrates the mapping of layers and competencies.

As we illustrate in the rest of this paper, this architecture allows for a better implementation of virtualized con-
trol. Through a layered approach, we ease problem identification and handling. It enables detailed assessments such
as gradual detection of security issues and adaptation of architectures as carried out within similar heterogeneous
environments [30, 28]. In the following sections, we detail the three layers and their mapping to the two reference
architecture styles while pointing out the connection to the functions and attributes of Industry 4.0.

5.2 | Management and Monitoring Cloud
The first component of the architecture consists of cloud-based monitoring and management infrastructure and ser-
vices, top left in Fig. 3. Many of the architectural approaches introduced after the publication of the Industry 4.0 vision
include this component as a hub. In this layer, data is globally collected and analyzed, and data-dependent supervision
decisions are taken. It performs data acquisition and aggregation from the on-premises devices and analyzes them, for
instance, through artificial intelligence tools. The integration in the layer of distributed diagnosis and prognosis frame-
works, as proposed in Wu et al. [10], allows for host machine learning processes based on collected and aggregated
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plant data. Techniques such as Preventive Health Management (PHM) as a Service, which reduces the maintenance
effort for the plant operator by relying on Platform as a Service (PaaS), and Software as a Service (SaaS), can be im-
plemented [11]. Such frameworks and services ultimately enable self-adjustment and self-optimization techniques to
reduce production waste and automatically adapt to variations such as mechanical wear (Configuration level, Fig. 4).
This cloud layer also hosts a service for container management, providing instruments for appropriate planning, posi-
tioning, and execution of real-time containers. Real-time tasks and containers are arranged according to their function
and interdependence and deployed on available real-time capable nodes, called K-nodes in Fig. 3. Through the help of
client-side agents, the service can update and replace distributed applications during run-time seamlessly. Again, this
component enables self-configuration by automatically taking care of the software replacements based on a recon-
figuration plan [9]. A system monitoring tool can be paired with a container management tool to verify the container
execution. Unlike the above-cited PHM and diagnosis and prognosis frameworks, this monitoring tool aims not to
produce surveillance but to monitor K-nodes and virtual servers’ status (by monitoring server metrics like CPU usage,
memory consumption, I/O, network, disk usage, process, etc.). Extension of the monitoring service with a time series
database further allows tracking changes in time, performing data analysis, and applying data-based techniques such
as deep learning.

A further service placed at this architecture level is an interface to the human operator. Plant operators in an
Industry 4.0 context interact with the system more in decision-making than in an operative role. As such, information
is displayed to enable informed operators to make decisions and interventions in production processes. To this aim,
features such as simulation and synthesis may optionally be available [31] (for the Cognition level in the Lee et al.
style in Fig. 4). Finally, replicas in the form of a digital twin test reliability and the overall monitoring and supervision
of the cloud environment (Cyber level in the Lee et al. style in Fig. 4).

5.3 | Control Cluster
The central element of the architecture is an IAAS infrastructure to host services and processes that have to interact
with on-premises devices. Fig. 3 shows an example of a hardware configuration for container-based virtualized indus-
trial control systems. Depending on the system’s needs, the represented components are virtual or physical servers
that run either in a cloud (virtual instance) or operate in a private (edge) cloud. In the latter case, each server can run
more than one virtual instance, obtaining the same resource sharing advantages of a computing cloud infrastructure
again. In both cases, the hosted virtual instances can be real-time capable, running control software, or non-real-time
capable for further services. The real-time instances, called K-nodes in Fig., run multiple containers managed by the
cloud service. A dedicated tool orchestrates system resources at run-time (See Section 5.5). In this environment,
each binary of an application can be managed within one container, including constraints and boundaries to ensure
operations. For instance, via a time-machine [8], a machine has access to its saved PHM states, consequently its
performance indicators and reports. It can compare them with itself and others of a fleet, enabling self-comparison.

As noted by Telschig et al. [1], the continuous growing demand for extension of control loops with cloud-based
analytics (see Section 5.2) requires mixed-critical software components to run on the same system. Thus, in the
Control Cluster, a time-critical component runs on fix assigned resources to guarantee timeliness. It is isolated from
others that run on a best-effort CPU scheduling policy while still sharing the system’s resources. In this setting, non-
real-time instances or separately allocated resources can handle such best-effort tasks. The scheduler may reclaim
co-located best-effort resources to buffer real-time task resource shortage within the time-frame of a task migration.
Non-real-time instances can address other, less critical services. For example, they can run a time-machine or carry
the edge computing portion of the health monitoring framework detailed in Wu et al. [10] (Conversion level, Fig. 4).
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The former collects snapshots of real-time control applications to enable peer comparison and similarity analysis, thus
promoting self-awareness [8]. The latter operates with redundancy on multiple copies of containers (Cyber level,
Fig 4), or the virtual instances themselves can have replicas to increase the system’s robustness. Server 2 in Fig. 3
could be a replica of Server 1, ready to take control when the latter fails. As we can have replicas in digital twins, the
real-time application can be extended by a model representing the physical device and its environment. The model,
fed with sensory input coming from on-premises and interfaced with the running process and human operators, then
allows self-comparison and diagnosis, [12].

5.4 | On-premises Installation
The control software connects with the sensing and actuation devices placed on or near the factory’s equipment (
Connection level, Fig 4). Depending on the timing and determinism requirements, this connection might need to
follow more restrictive protocols. An example of such protocols can be found in the Time-Sensitive Networking (TSN)
standards family [32]. However, application-specific needs and physical location set the need for such protocols.
Depending on control requirements, including device distance and cycle times, popular COTS Ethernet-enabled pro-
tocols may suffice. Traditional choices such as isochronous ProfiNet and EtherCAT manage hundreds of devices in
a time-critical manner for local networks [33]. The proposal leaves thus the choice of the connection type to each
application case.

Although the on-premises computation has been moved to the Control Cluster component, the proposed style
foresees additional control software installed on on-premises devices. For redundancy purposes, the cluster may
indeed operate a redundant copy of the on-premises controller (Section 5.3). Some devices may operate as Remote
Terminal Units (RTU), serving as an interface to the containerized software or even execute some minor local control
function. Such local control loops [29] would have the advantage of reducing latency while exploiting the computing
power of a (private) cloud.

Morabito [34] shows that control applications can run inside a container on typical ARM single board computers
with a minimal performance impact. Replication and stateful container snapshots further enable Industry 4.0 features
also for such on-site devices. As part of data evaluation and sharing, they can now independently and automati-
cally calculate health, estimated remaining useful life and other parameters, supporting machines’ self-awareness. For
instance, via a time-machine [8], a machine has access to its saved PHM states, consequently its performance indi-
cators and reports. It can compare them with itself and others of a fleet, enabling self-comparison. Thus, through
containerization, we ease maintenance and reduce cost while increasing resilience and robustness.

5.5 | The Orchestrator
The heart of this proposed architecture style is the orchestration software running on each real-time capable node of
the Control Cluster. An orchestrator, in this context, is a tool developed to increase resource utilization without sig-
nificantly impacting determinism. It monitors containers and resources and assigns the latter according to algorithms,
rules, or predetermined configurations.

There are two ways to manage resources: static and dynamic. If statically configured, the level of latency and
determinism that is achievable can be defined up-front. A static resource schedule is created offline and passed to
the orchestrator for execution. Although such a configuration would be the safest, the amount of resource sharing
gained is limited. For such a fixed schedule, the configuration must be pessimistic, taking the given worst-case ex-
ecution time (WCET) as regular and granted and reserving the corresponding CPU-slice for every application. For
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higher resource savings, a dynamic reallocation strategy is attractive. A dynamic scheduling strategy yet reallocates
containers during run-time to guarantee timeliness when unforeseen delays occur. It allows higher resource sharing
as it can adapt to current needs. Complete dynamic rescheduling of containers would be non-deterministic as it de-
pends on the feasibility/admission test [21]. However, with given constraints, determinism can be managed within a
certain probability of success that depends on the spare and available time-frame and is inversely proportional to the
optimism in reprogramming worst-case times.

Instead of allocating resources based on worst-case parameters, a dynamic orchestrator uses probabilities to
assess the situation. It considers typical run times, contemporaneity factors, and probabilities of exceeding a given
WCET. It samples run-times and generates cumulative distribution functions or performs curve-fitting to predict dis-
tribution models and probabilities. The combined probabilities then tell the rate of success of a schedule and trigger
resource organization as needed. This approach resembles the vertical scaling techniques used in cloud-hosted
applications [35]. Similar approaches in cloud computing environments increase resource efficiency through over-
subscription, where the reserved resources may exceed the actual requirements acting as buffers for worst-case
situations [36]. In our case, it can be assessed to which probability a system-wide malfunction may occur, allowing a
system administrator to set a maximum acceptable boundary of risk. This boundary then defines the probability of
success of dynamic scheduling related to the achieved resource savings: the higher the risk, the more savings may be
achieved.

6 | EXPERIMENTS
Innovating a traditional control system to align it with the Industry 4.0 principles is a process that comprises different
stages with an increasing level of innovation. A traditional control system is typically embedded (i.e., the control is
native to the hardware). Thus, the most straightforward migration strategy externalizes the control to a computer
system equipped with OS and appropriate software programs. Such a system is referred to as a bare-metal server,
and it is typically single-tenant (i.e., dedicated to a single customer). A control system on a bare-metal server can be
further containerized. Containers execute individual threads or services in isolation and can support parallel multi-
tenant computations (i.e., multiple customers execute their threads in isolation). A bare-metal server can also be
virtualized to increase portability. Virtual machines are emulators of a computer system, and a bare-metal server can
be migrated to one or more virtual machines (VM)s. VMs can fully virtualize the whole computer system and run
on shared hardware or a host OS. In the former case, the VM manager (i.e., hypervisor) is Type 1 or native and has
direct access to hardware; in the latter case, it is Type 2 and depends on the host OS layer’s services. Containers and
virtualization can be combined to increase portability, thread isolation, andmulti-tenancy. Finally, a control system can
be migrated to the cloud as IaaS. Cloud services can host a control system as VMs equipped with Type 1 hypervisor
and can additionally be containerized.

In this work, we propose an approach to evaluate and compare the performance of the following types of virtu-
alized control systems:

• A containerized bare-metal server, which we use as baseline;
• A containerized Type 1 hypervisor controlled virtual generic instance on the cloud designed according to the

architecture described in Section 5;
• A containerized Type 1 hypervisor controlled virtual compute-optimized instance on the cloud designed according

to the architecture described in Section 5.
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Each of the three systems runs the same Real-Time enabled OS and test real-time applications that log measurement
data during run-time. To be as faithful as possible, we extracted the parameters of a running multi-tenant industrial
control system from specifications and data provided by Siemens Germany (example of Fig. 1). We instantiated it as
an example for performance test case 4, Section 6.3. To add variability and test generalizability of the approach, we
extended the test cases to cover scenarios with a smaller and mixed-period executable (test case 1-3). These should
help to identify the challenges of interfering tasks and the effect they have on responsiveness and determinism on
each other in a virtualized and containerized environment.

Fig. 2 illustrates our method. To set up the testing infrastructure, we base our choices on our previous work
on the evaluation of containerization and virtualization solutions through offline and latency tests [37]. We briefly
summarize this selection and the resulting solutions in Sections 6.2 and 6.2.1 respectively.

6.1 | Experiment Setup
We have chosen the following systems for all our tests (including Hofer et al. [37]). The bare-metal server features
two Intel Xeon X5560 (Q1’09) processors on eight cores, 16 threads, limited to two cores for our experiments. For
hypervisor-based tests, we selected Amazon Web Services (AWS) to host cloud-based environments. Their recent
virtual instances use a new hypervisor based on KVM, called HVM, which allows direct assignment and control of
hardware and resources, reducing the virtualization overhead. The new instances offer comparable HPC performance
but greater flexibility and scalability [38]. We selected an AWS HVM Type 1 hypervisor-based T3.xlarge generic
and a C5.xlarge computation optimized instance. The T3 instances feature an Intel Xeon Platinum 8100 or 8200
(Q3’17/Q2’19) series CPU, while C5 runs a custom Intel Xeon Gold 6200 series (Q3’17) CPU. A typical T3 instance is
further limited to a 40% CPU baseline. If an instance exceeds that level of CPU, it will eventually be throttled down to
40%. A T3-Unlimited enabled variant allows for CPU bursts up-to 100% at an additional price. Both AWS instances
run on four virtual CPUs, 8 or 16 GB of RAM, shared resources, and use a custom configured kernel set up to support
their proprietary hardware in Ubuntu.

6.2 | Selection of the off-the-shelf OS and containerization tools
In Hofer et al. [37], we reviewed the state-of-the-art operating systems that can provide both (hard) real-time and
container framework support. Table 1 summarizes the operating systems we reviewed. We identified two promising
operating systems, Xenomai and PREEMPT-RT patched Linux, and tested task latencies in various configurations, with
the system both in idle and stress scenarios. For such latency tests, we chose Linux kernel version 4.9.51, the latest
release available that features both patches at test time. We require the EDF scheduler and Greedy Reclamation of
Unused Bandwidth (GRUB) algorithm for this work’s performance test, available only in kernel versions 4.13 or higher.
These operate on the latest Ubuntu LTS release and patch, i.e., Ubuntu Server 18.04.2 and PREEMPT-RT 4.19.50-rt22.
Thus, in the end, we choose Ubuntu Server LTS with the PREEMPT_RT patch for the optimization tests.

We further studied the three containerization platforms introduced by [19]. While the solutions seem similar, they
differ in their goals. LXD focuses on (stateful) system containers, also called infrastructure containers, whereas Docker
focuses on ephemeral, stateless, minimal containers. While the former is better suited for long-running software
based on clean distribution images, the latter is indicated for instances that are replaced entirely when a new version
is available. The two models are not mutually exclusive; for instance, LXD can provide a full Linux system in a Docker
instance. Singularity tries to offer a hybrid solution that combines direct access performance with containers’ isolation.
Singularity is an incomplete isolation solution since it grants access to I/O operations without context changes. After
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TABLE 1 Summary of tested operating systems
Name Pros Cons Evaluation
resinOS + patch(X3/PRT) Small, automatic up-

dates, Balena pre-
installed

manual patch, possible
efficiency issues

Maintenance high, may
not work at max effi-
ciency

Ubuntu Core + patch
(X3/PRT)

Small, automatic up-
dates

manual patch, possible
efficiency issues

Maintenance high, may
not work at max effi-
ciency

Ubuntu LTS + Xenomai 3 Ubuntu network and
technologies, Separa-
tion of RT and nRT

Recompiling of applica-
tions needed, many RT
cores drops performace

Expect high perfor-
mance, medium mainte-
nance

Ubuntu LTS + PREEMT_RT Ubuntu network and
technologies, up-to date

Keep awareness of lim-
its, driver and hardware
management needed

Med-high performance
and low maintenance
expected

manual tryouts and specification review, we selected Balena3 and Docker4. With these technologies, we configured
a real-time container engine and built and ran a containerized real-time application. Our experiments showed that
the containers could be grouped and orchestrated using the Linux kernel’s CGroups feature to optimize resource
utilization. This feature will be used in optimization tests. More details are available in Hofer et al. [37]. The selected
configuration is used for the new performance and optimization tests in Section 6.3.

6.2.1 | Latency tests
The latency tests verify the suitability of specific hardware or virtualization solutions in Table 1. By applying com-
putational and I/O stress to a task’s shared resources, we can examine its real-time parameters’ latency effects. We
focused on the interaction of virtualized control tasks with the shared environment, as described in the following.
The performance tests execute in container batches with varying system load and timing constraints. We use the
Earliest Deadline First (EDF) scheduling to reach high theoretical utilization rates of 100% [21]. Then, we partition
resources via CGroups to virtually address every resource slice as if it were a separate computation unit. The orchestra-
tion software of Section 5.5 helps us manage interrupts, create CGroups and assigning its slices, and manage system
resources to isolate them from test containers during run-time. First, we observe performance variation by changing
kernel boot parameters of the off-the-shelf OS chosen in the latency tests. We apply boot time kernel settings dur-
ing multiple reboots such as scheduler tick timing, scheduler isolation, and RCU back-off CPUs. The goal is to find
settings that promise steady execution on the three hardware instances. A stable median, low average, and standard
deviation indicate ideal kernel configurations for each machine type. Next, we compare the performance of the three
test architectures with the most stable setup. We increase and mix task configurations and verify the testing run-time
determinism in long-term execution. Dropping of performance and the amount of missed deadlines ascertain the
absolute upper sharing bound.

Our test model relies on calibration loops to reproduce similar load scenarios for all three system instances, fixing
3 Balena project homepage: https://www.balena.io
4 Docker homepage: https://www.docker.com
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the task time t i . We remove the control-task related noise and delays (ni k ) by reducing the test tool to computation
only. The test software locks its memory in a page, avoids IPC or I/O, and reduces involuntary task switches where
possible. For all data, we then produce statistics containing minimum, maximum, average, and standard deviation.
Further statistics such as median skew and test group maximum values are added to the performance tests to assess
distribution and uniformity.

We use cyclictest [39] Version 1.0 to measure the latency of cyclic firing behavior of a real-time application and
stress [40] to simulate load in the system. The offline preliminary tests run on a dual-core, four-thread, i7 Skylake
(U) system, while the main hardware comparison tests run on the three systems detailed in Section 6. During the
progressive isolation of CPU resources, we measure the idle firing time and firing time change with every CPU runs
stressing threads. Once found the best setup, we perform one idle and one stressed test for each configuration. All
variants, i.e., Standard Ubuntu, Xenomai patch, and PREEMPT-RT patch, run the tests for at least one million firing
loops. The logged results deliver the data for the long term test evaluation.

6.2.2 | Execution and Results
In summary, the latency tests give the following main results. The first preliminary latency tests determined that
guest-host CPU isolation with a load balancer is the best setting for our purposes. Table I in [37] displays test results
for the preliminary test. Fig. 5 then shows the comparison test results with our found best setting. Ideally, the
maximum firing delay of the threads should stay below 1

10
t h of the cycle time, which we assumed to be 100ms for

the sake of comparison in this study. Therefore, Fig. 5 features two reference lines visualizing the boundaries for
typical thresholds, one at 10ms (for a 100ms cycle) and 100µs (for a 1ms cycle). A total of ten million loops over
multiple hours have been executed for each configuration. All results obtained have been gathered under stress and
should be considered the worst-case scenarios. Among all standard kernel configurations, the reference bare-metal
solution equippedwith any of the three patches (BM, left box-plots in Fig. 5) performs best in the mean. If we consider
the PREEMPT_RT configurations (Prt) across all machine types, the bare-metal setup performs best in mean but not
spread as the box-plot whisker spans higher, almost reaching the 100µs threshold. With only 96 occurrences out of 10
million (0.00096%) exceeding the upper limit, a general T3 instance with PREEMPT_RT can be an economical solution
for a bare-metal replacement where strict determinism is not needed or cycle times are higher than the peak value
measured 49ms . It shows the lowest spread and peak (114µs ) among themeasured instances that only a PREEMPT_RT
T3-Unlimited enabled unit outperforms.

6.2.3 | Latency results discussion
RQ1: What are possible off-the-shelf system configurations that make resource sharing through containers viable?
We identified Ubuntu 16.04 LTS with the PREEMPT_RT real-time patch, and Docker containers as the best fit among
the examined lowmaintenance options. We came upwith four different solutions suitable for migration to application
containerization by observing systems under stress and analyzing task latency across different configurations. These
solutions maintain wake-up determinism at different levels as follows:
1. The bare-metal solution (BM) ensures the most deterministic behavior for real-time requirements. Even though

it is the weakest among all configurations in terms of CPU resources, the strict bond between hardware and
software boosts its responsiveness.

2. The virtualized instance C5with PREEMPT_RT patch is the best non-hardware solution for real-time requirements
that trades-off good average latency and deterministic behavior. While it still suffers from some Hypervisor
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F IGURE 5 Boxplot of latencies, with mean (blue dot) and overshoot size (red triangles).
BM.Prt Bare Metal with PREEMPT-RT T3.Aws AWS HVM type 1 with T3
BM.Std Bare Metal standard T3.Prt AWS HVM type 1 with T3 and PREEMPT-RT
BM.Xen Bare Metal with Xenomai T3.Prt.U AWS HVM type 1 with T3 and PREEMPT-RT Unlimited
C5.Aws AWS HVM type 1 with C5.xlarge T3.Xen AWS HVM type 1 with T3 and Xenomai
C5.Prt AWS HVM type 1 with C5.xlarge and PREEMPT-RT T3.Xen.U AWS HVM type 1 with T3 and Xenomai Unlimited
C5.Xen AWS HVM type 1 with C5.xlarge and Xenomai

latency, the exclusiveness of CPU access and the ability to control C-states allow reducing non-I/O induced noise
and plot better value consistency.

3. The T3 unlimited instance with PREEMPT_RT is a cheap solution with good average latency. As there is no guar-
antee of extra CPU power availability or responsiveness, these configurations can be chosen as an intermediate
solution between T3 and C5 instances.

4. The T3 instance with PREEMPT_RT is a viable solution with good average latency that might not qualify for hard
real-time requirements. Also, this T3 instance may not ensure the physical CPU exclusiveness. For this reason,
the C5 PREEMPT_RT instance may be a better choice for stricter timing requirements.

In conclusion, the results are promising and confirm the feasibility of migration to IAAS solutions.
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6.3 | Performance tests for resource optimization with container orchestration
With the chosen test infrastructure described in Section 6.2.1, we designed and executed a set of performance tests
of the three types of deployed architectures for virtualized control systems (Section 6) while executing real-time tasks
in a shared and containerized environment. The new performance tests further evaluate system configurations and
assess CPU sharing limits while the orchestrator we define in Section 6.3 manages tasks and resources.

6.3.1 | Test design
We perform the following resource efficiency tests by placing a set of real-time applications on shared resources. For
this purpose, we use the real-time test software rt-app [41] to create configurable dummy applications. We place
them into separate containers and configure them with running periods and computation times. For simplicity, we
match relative computation deadline di and period pi of a container i in all tests (See Eq. 1). Beyond the worst-case
value expected for ri , WCET wi , the app configuration requires a simulated run-time parameter t i . The latter defines
the amount of time the application spends performing dummy loop calculations to approximate the simulated task’s
supposed run-time. As the number of loops to perform depends on a constant value set at a startup (calibration)
and isolated task-caused noise, the resulting execution time ci depends solely on interaction with the system. This
calibration further ensures identical task execution models for each hardware, respecting the same system load and
run-time parameters on all tested systems. During test execution, the orchestrator and rt-app monitor the system’s
run-time behavior. With these results, we can detect startup latency, execution jitter, and deadline misses.

Our experiments run with the following performance parameters. We observe the actual total computation time
ci as we want to minimize fluctuation while keeping zero deadline overshoots during run-time. Consequently, the
smaller the standard deviation and the skew of ci , the more stable is the solution.

Each test batch consists of the following four configurations:

Test Case 1 – lower bound: homogeneous period and run-time among all containers executing on the same resources
with a WCET wi smaller than the best case scheduler’s wake-up granularity (1000µs ). We force high-resolution
granularity schedulingwith this test, causingmore scheduler calls, and consequently, context changes and latency,
than planned for the highest scheduler tick rate. The test setup consists of ten containers with a WCET wi of
900µs each. With a period and deadline of 10ms each, this results in a resource utilization factor 9% for each
container.

Test Case 2 – upper bound: homogeneous period and run-time among containers executing on the same resources,
with a run-time to period ratio ( t ipi ) close or equal to 0.5. The kernel limits the scheduler’s refresh rate to
1000/4000µs for 1000/250Hz systems, making this configuration a scheduling challenge. The configured test
case includes two containers with 2.5ms WCET and 5ms period.

Test Case 3 – diversity: mixed periods and run-times for each container executing on the same resources. Irregular
run-times should challenge the possibility of execution alignment where containers always run in the same order.
Moreover, the deadline priority continues to rotate, helping to determine stability in mixed scenarios. This test
case consists of a diverse set of containers: one container set to 2.5/5ms , one 900µs/10ms , and one configured
as 3/9ms for worst-case computation time and deadline/period, respectively.

Test Case 4 – Simulation test: As a conclusive test, we emulate the scenario of our example application extracted from
the use case specifications provided by Siemens Germany. We verify the boundaries for this use case through
the parallel operation of multiple instances of the flow control software. The test configuration includes ten
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containers with the period and run-time homogeneous among all tasks and running on the same resources. The
timing is based on the values of the example in Section 4 (10ms run-time, 100ms deadline and period).

The test scripts and complete test results can be found in the project repository [42].

6.3.2 | Execution and results
The first test batch for kernel configuration shows the full dynamic tick configuration with mandatory back-off as
performing best. The setup scored the best results in most runs for average and median stability. Test case 1’s values
gave standard deviations of 31µs on bare-metal, 7µs on type C5, and 15µs on type T3 instances running ten containers
in parallel. Second by performance and stability is the fixed-tick kernel configuration. This second configuration turns
out useful if more than one task is available to run or next in line simultaneously, mostlywhenmixedwith non-deadline-
oriented schedules. For the long-run tests of test batch two, we choose, therefore, a PREEMPT_RT kernel with full
dynamic ticks and RCU back-off, with a run-time of 15 minutes each.

In Test Batch Two, we repeated the same tests on all three systems. To test the repeatability, we re-calibrated and
repeated the tests multiple times. Additional results and diagrams can be found in the project archive [43]. Tables 2
to 5 report the results of the four test cases. We display numbers for test cases 1 and 4 with loads from close to 50
up-to 100% of CPU time only.

Test Case 1: Even though the system load never reaches 100% in these tests, the table shows continuity among all
instances with minor variations of about one to five percent. The AWS C5 instance performed best among the
three candidate systems. With a steady average run-time, close to null skew, and an unvarying standard deviation,
the three’s most resourceful keeps a steady and deterministic run. The other virtual instance is slightly slower but
keeps a small variation bound. Interestingly, in this configuration, the bare-metal system shows the most jitter.
Unlike T3 and C5, the skew and standard deviation values halve and double from test to test, having a similar,
varying impact on the average run-time. In the highest configuration, systems reach loads of 90 to 93%. No runs
across all configurations show any overshoot, confirming the feasibility of handling multiple real-time containers
while suffering from relatively small system noise.

Test Case 2: This test case contains only two configurations: one or two containers. Unfortunately, the system noise
is already high enough to make a single container exceed 50% of CPU load. A consequent phenomenon is that
configuration two produces only one run time log on all candidate systems. All performed tests do not deliver
enough values to get minimum andmaximum for the skew and deviation, marked by an asterisk in Table 3, leaving
doubt on possible performance change. However, the visible data does suggest a small skew of the distribution,
but the standard deviation tends to remain low. The high amount of deadline misses on configuration two, around
20 or more for all systems, nonetheless upholds that system overload causes the expected misbehavior.

Test Case 3: The average run-time in this mixed container spans all running containers and serves as a variation
monitor rather than a proper average. Indeed, the high number of deadline misses in this third configuration
causes task preemption and run-time values to boost. Like in the previous test cases, AWS C5 keeps a steady
and centered distribution displaying no skew. The bare-metal configuration behaves similarly to test case 1 with a
slightly trembling skew around a tenth of amicrosecondwhilemaintaining a relatively constant standard deviation.
However, the general-purpose instance suffers from the high load of the last test and drifts into an unusually high
skew and standard deviation of 37µs . Test 1 and 2 already use close to 90% of CPU time, causing first deadline
overshoots for bare-metal (20157) and AWS T3 (25) in configuration two. The AWS C5 instance instead does not
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TABLE 2 Test batch 2, test case 1
Configuration Bare-Metal AWS T3 AWS C5

AVG SKW SD_MX AVG SKW SD_MX AVG SKW SD_MX
4 units <50% 935 0/14 22.83 903 3/11 16.21 914 2/2 5.05
5 units <60% 950 0/12 23.91 904 4/11 16.33 913 0/0 6.53
6 units <70% 969 0/6 11.34 905 5/11 15.73 913 0/4 5.97
7 units <80% 930 0/19 22.37 904 1/11 16.46 913 0/4 5.48
8 units <90% 926 0/6 12.28 904 2/10 15.43 913 1/3 5.43
9 units <100% 920 0/13 23.33 904 4/10 15.14 914 1/3 5.12
10 units ≈100% 933 0/6 11.66 904 4/9 14.81 914 1/4 5.50

TABLE 3 Test batch 2, test case 2
Configuration Bare-Metal AWS T3 AWS C5

AVG SKW SD_MX AVG SKW SD_MX AVG SKW SD_MX
1 unit <60% 2584 4 21.28 2510 12 27.34 2538 1 6.48
2 units ≈100% 2521 13* 23.23 2506 14* 26.03 2535 0* 5.75

TABLE 4 Test batch 2, test case 3.
Configuration bare-metal AWS T3 AWS C5

AVG SKW SD_MX AVG SKW SD_MX AVG SKW SD_MX
1 unit <60% 2579 10 22.16 2507 9 23.23 2534 1 7.70
2 units <90% 2589 4/14 22.65 2569 4/7 19.01 2587 0/1 5.40
3 units ≈100% 2269 1/7 26.54 2179 7/37 37.25 2183 0/1 11.13

TABLE 5 Test batch 2, test case 4.
Configuration Bare-Metal AWS T3 AWS C5

AVG SKW SD_MX AVG SKW SD_MX AVG SKW SD_MX
4 units <50% 10712 0/8 31.78 10072 14/16 45.69 10139 2/2 12.03
5 units <60% 10614 8/10 35.66 10056 14/16 35.46 10310 1/3 68.98
6 units <70% 10132 3/10 34.87 10038 4/7 23.30 10136 1/2 10.55
7 units <80% 10115 0/11 31.25 10166 49/57 123.36 10138 1/2 11.08
8 units <90% 10104 3/12 32.20 10052 10/16 41.55 10137 1/2 9.04
9 units <100% 10356 3/8 29.83 10059 5/16 126.17 10138 1/2 9.94
10 units ≈100% 10089 4/10 46.29 10027 1/3 12.75 10136 1/2 9.91

Performance variations with an increasing number of containers. Values in µs .
AVG - average run-time of container set overall measured run-times
SKW - absolute min and max distance between average run-time value and median for the configuration
SD_MX - standard deviation of the container with the highest skew
* The starred values indicate runs where at least one thread did not produce log output
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fail any run in these first two tests. For test three yet, all configurations show misses in the order of thousands in
this 15-minute test.

Test Case 4: In this fourth test case, the AWS C5 keeps a median centered distribution again and, except for the
second test, stays with distributions close to 10µs . Similarly, the bare-metal system shows the same small distri-
bution skew and slight jitter in its standard deviation as it did for case 1. However, the AWST3 in this configuration
seems to suffer more from system latency and noise, showing higher skew and standard deviations than in any
test before. As for maintaining deadlines, the results keep stable for all tests except full-load, where they show 3,
244, and 3 overshoots for bare-metal, T3, and C5, respectively.

6.3.3 | Performance results discussion
RQ2:What is the achievable level of CPU sharing with a standard real-time enabled kernel? The static orchestration tests
highlight some additional facts beyond the best performing configurations. One thing that arose is the performance
increase of generic instances (T3/T3U) when moving from 10 to 50% of CPU load. This improvement is like those
observed for latency tests, probably due to the hypervisor’s CPU management. It may move the vCPU thread or
fill the remainder with other instance’s vCPU threads. Unlike computation-intensive instances (C5), a type T3 does
not require locking onto a specific physical CPU, adding volatility and latency. The latency witnessed during low
system load may thus be a product of virtual thread shifting. As a T3 instance has no hardware access, this CPU
could continuously transition to a lower C state, adding more latency for the thread to be back in execution. Thus,
similarly to the latency tests’ conclusions in Section 6.2.1, a higher CPU load reduces system-induced latency and
noise. Another observation is that with a high CPU load, the real-time tasks take over minor threads. This overtaking
causes misbehavior such as incomplete or empty log files, tasks not terminating at predefined times, or sometimes
unresponsiveness of the system. Furthermore, in some cases, one container in the test configuration kept a continuous
run-time deviation from the preset run-time. Occasionally, the average andmedian run-time kept around 12ms instead
of 10ms while displaying the same jitter and deviation behavior. Despite this deviation, the run-time values’ present
stability or determinism does not hinder real-time operation. During preliminary testing, we noted that the restart of
a virtual instance on the AWS cluster causes it to move to a different system rack. Given that hardware across system
racks may not be equal, e.g., Xeon 8100 vs. 8200 series CPU, this change after shutdown is a variable to be considered.
While this influenced the calibration for AWS-based tests, it does not influence the comparison among the same
virtual instance results. The resulting run-time data from both test batches shows that resource sharing for real-time
containers is feasible. Properly configured, a system can reach a utilization limit of 0.9 or 90%. Our tests have shown
that although under stress, both latency and determinism reach desired values. Among all, the AWS C5 shows the
most stable run-time values. It is themost resourceful of all systems and thus likely suffering the least frombackground
noise. Being a virtual instance, it does not respond directly to hardware interrupts like the bare-metal system, softening
the amount and duration of interrupts. However, this does not mean it is not influenced by system noise. As seen in
test configuration two of Table 5, the C5 system can still be subject to significant variations. Nevertheless, the bare-
metal instance shows a higher fluctuation in skew and standard deviation but still stays steady in a specific range. In
all tests, the results for skew and deviation remained within 20 or 30µs . While this jitter may seem a problem, it can
be isolated to this range, making it predictable. Lastly, the generic AWS T3 shows the worst but still relatively stable
run-time behavior. The highest fluctuations are shown in test case 4, where idle times between cycle repetition are
the longest. Indeed, this confirms that during idling, the hypervisor may change the physical CPU reservation. If we
consider these constraints, also an economic generic AWS T3 instance may suffice our computational needs. In the
end, all systems show adequate stability for the sample loads we created. Theworst variation of system run-time stays
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within 126µs , a value that has to be considered when dealing with hard deadlines in the order of a few milliseconds or
less. However, this confirms that all setups allow shared computational loads up-to and exceeding 90%. Only close
to full load, the systems start to suffer from deadline overshoots. Starting from these results, we can now investigate
if off-the-shelf technology keeps the process viable once task I/O (ni k ) and network latency are taken into account.

The generalization of the results is made based on the premise that the observed real-time tasks are calibrated
to their system, representing similar behavior on all three candidates. The task combination and duration have been
chosen rigorously to consider system utilization factors, system scheduler tick rate, programmed interruptions, task
period mismatches with consequent priority shifting, and their combination. Task combinations with longer periods
will suffer less from the system and environment-induced noise. Tasks with shorter periods, e.g., a 1 ms control loop
for motion control systems, enter a domain where a commercial scheduler tick of 1000Hz would lose its utility and
require different scheduling schemes or system setups. A local control loop (on-premises RTU, Section 5.4) managing
the quick feedback is one thinkable solution.

6.4 | Scripts and tools developed for the tests
Both kernel versions with patches described in Section 6.2 can be built and restored for all three architectures using
our automated script, available online [43]. Further details, the script executing all the tests, the installation scripts,
the experiment data, and technical details and results are available in [37].

7 | LESSONS LEARNED
Migrating control applications from hardware to bare-metal and finally to an IAAS infrastructure has two significant
advantages. First, application containerization allows managing and monitoring execution easily. It eases parallel
operation, redundancy, quick updates, and upgrades for container-confined code. We have seen that replacing a set
of running containers at run-time is feasible and it allows distributed updates and life-fixes of critical problems. A
container may execute on-site on the device while keeping a copy on the IAAS for backup or redundancy. Second,
physical hosts, in the cloud and private cloud, serve multiple virtual instances. The computing power available to
individual instances is often flexible. Such computing power usually exceeds the original hardware’s performance,
permitting us to usemore complex and demanding control algorithms. On the other hand, application containerization
requires some software adaptation, the generalization of I/O and interfaces, and results in hardware abstraction. This
extra effort must be taken into account when evaluating a migration strategy. The introduced distance between
control cloud and on-site devices may also require more time-critical communication protocols respecting standards
such as the TSN family, which may add some overhead. On the other side, a recent systematic mapping study [2]
highlights the limits of available architectures, for instance, based on the 5C attributes. Our architecture style has been
designed to ease application migration and support the migrated application’s self-* properties with the management
and monitoring layer. In summary, the proposed architecture gives support to a complete control solution for both
research and industry.

Thanks to the results of our tests, we have drawn a few lessons we learned that could be beneficial for practition-
ers aiming to use application containers for industrial control as in the following:

Real-time requirements, and consequently, architecture, are application-specific. While a generic architecture, as pre-
sented in Section 5 covers most situations, the current layout changes for each case. Like in the motivating exam-
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ple, Fig. 1, levels may merge where the environment requires it and give the final architecture a different, reduced
shape. However, responsibilities, functions, and goals remain unchanged.

Picking a real-time capable OS does not guarantee determinism. Different OSs have distinct trade-offs. While the
Linux Xenomai patch outperforms the PREEMT_RT patch, its induced kernel overhead limits system scalability.
When choosing the OS, we have to match hardware and constraints for the best results closely.

Modern virtualization techniques perform well enough to maintain determinism. Both the latency and performance
tests showed satisfying results confirming the viability of application migration. Depending on task configuration,
we can reach subscription rates exceeding 90% of CPU resources. The next and last constraint to tackle will be
the network and I/O latency. However, this constraint depends on the applications’ timing requirements and,
thus, needs further investigation.

Direct hardware access decreases latency and improves responsiveness. Despite the less powerful hardware, the
Bare-Metal server still outperforms newer hypervisor-based instances for task responsiveness. Similarly, lim-
ited access to CPU resources improves virtualized performances, i.e., AWS C5 vs. T3-Unlimited. Thus, although
possible, virtualized instances require newer and better hardware to reach similar performance. A practitioner
might thus need to consider resource sharing beyond control containers to reduce hardware installation costs.
The architecture of Section 5 helps to address this job.

Economic virtual instances may suffice for less strict determinism requirements. Generic AWS T3 shared instances
show comparable results for task firing latency but add variability when under stress. While this variability dis-
courages their use in environments with strict timing requirements, i.e., task periods of few milliseconds or less,
it enables them, however, for less critical operations, e.g., periods in 100’s of milliseconds like in the motivating
example, Section 4.

8 | CONCLUSIONS AND FUTURE WORK
This paper explored the limits and feasibility of migrating real-time applications from bare-metal servers to virtualized
IAAS configurations, up-scaling the installed computation appliances. We showed that containerization offers a novel
paradigm for control applications exploiting cost reduction advantages. Unfortunately, identifying the off-the-shelf
solution that fits the specific real-time constraint is often challenging for practitioners. We suggest, therefore, an
architecture to help the migration and placement of these new applications. It serves as a template for transition and
enables advanced features for novel industrial control systems. Next, we experimentally verified migration viability,
analyzing environment noise and latency. We introduced an orchestration tool to manage environment setup and
schedule the real-time containers based on pre-configured capacities. With system calibrated testing tools and tar-
geted test cases, we address worst-case scenarios to identify upper limits for externally induced noise and latency.
With a worst run-time variation of 126µs on a generalized T3 instance, we have confirmed that environment-induced
noise is low enough to permit migration. As the testing scenarios targeted worst-cases, except for some particular
use cases, the result is transferable to other task setups and combinations. Finally, we concluded with a summary of
the pros and cons and listed lessons learned.

In future work, I/O and system latency will be investigated, and dynamic allocation strategies will be exploited
to improve system performance. A dynamic orchestration algorithm will help tackle issues that arise when tasks do
not respect their designed parameters. This new configuration will also increase a system’s robustness and detect a
deviation of task behavior due to cyber-attacks or externally induced overloads. New latency and performance tests
on industrial use cases will help further analyze limits and possibilities for shared-resource real-time systems, including
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robustness and behavior when under attack.
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